<p>All solar power systems work on the same basic principles. Solar panels first convert solar energy or sunlight into DC power using what is known as the photovoltaic (PV) effect. The DC power can then be stored in a battery or converted by a <a href="https://www.mingdeinverter.com/" rel="noopener noreferrer" target="_blank">solar inverter</a> into AC power which can be used to run home appliances. Depending on the type of system excess solar energy can also be fed into the electricity grid to provide credits and further reduce electricity costs.</p><p> </p><p>The three main types of solar power systems</p><p>1. On-grid - also known as a grid-tie or grid-feed solar system</p><p><br></p><p>2. Off-grid - also known as a stand-alone power system (SAPS)</p><p><br></p><p>3. Hybrid - solar plus battery storage with grid-connection</p><p><br></p><p>First we will describe the common components used by all three types before going into more detail about the different systems and how they work.</p><p><br></p><p>Most modern solar panels are made up of many silicon based photovoltaic or PV cells which generate direct current (DC) electricity from solar energy. The individual PV cells are linked together within the solar panel and connected to adjacent panels using DC cables. Note: It is light energy or irradiance, not heat, which produces electricity in photovoltaic cells. Solar panels also known as solar modules are installed together in ‘strings’ to create a what is known as a solar array. The amount of solar energy generated depends on a number of factors including the orientation and tilt angle of the solar panels, efficiency of the solar panel, plus any losses due to shading, dirt and even ambient temperature. There are many different solar panel manufacturers on the market so it worth knowing which are the best solar panels and why.</p><p><br></p><p>Solar panels can generate energy during cloudy and overcast weather but the amount of energy depends on the 'thickness' and height of the clouds, which determines how much dispersed light can pass through. The amount of light energy is known as solar irradiation and usually averaged over the whole day using the term Peak Sun Hours (PSH). The amount of PSH or average sunlight hours can vary greatly throughout the year depending on the location.</p><p><br></p><p>Solar panels generate DC electricity which needs to be converted to alternating current (AC) electricity for use in our homes and businesses which is the role of the solar inverter. In a ‘string’ inverter system, solar panels are linked together in series and the DC electricity is brought to a single inverter which converts the DC power to AC power. In a micro inverter system, each panel has it’s own micro inverter attached to the rear side of the panel. The panel still produces DC, but is converted to AC on the roof and is fed straight to the electrical switchboard.</p><p><br></p><p>There are also more advanced string inverter systems which use small power optimisers attached to back of each solar panel. Power optimisers are able to monitor and control each panel individually and ensure every panel is operating at maximum efficiency under all conditions.</p><p><br></p><p>Electricity Switchboard</p><p>(Electricity consumption.) In a normal grid-tie solar system AC electricity from the solar inverter is sent to the switchboard where it is drawn into the various circuits and appliances in your house that require AC electricity. Any excess electricity generated by the solar system is sent to either the electricity grid through an energy meter or stored a battery storage system if you have a hybrid system. Hybrid systems can both export excess electricity and store excess energy in a battery. Some Hybrid inverters maybe also be connected to a dedicated backup switchboard which enables some ‘essential circuits’ or critical loads to be powered during a grid outage or blackout.</p><p><br></p><p>1. On-Grid System</p><p>On-grid or grid-tie solar systems are by far the most common and widely used by homes and businesses. These systems do not need batteries and use common solar inverters and are connected to the public electricity grid. Any excess solar power that you generate is exported to the electricity grid and you usually get paid a feed-in-tariff (FiT) or credits for the energy you export.</p><p><br></p><p> Unlike hybrid systems, on-grid solar systems are not able to function or generate electricity during a blackout due to safety reasons. Since blackouts usually occur when the electricity grid is damaged; If the solar inverter was still feeding electricity into a damaged grid it would risk the safety of the people repairing the fault/s in the network. Most hybrid solar systems with battery storage are able to automatically isolate from the grid (known as islanding) and continue to supply some power during a blackout.</p><p><br></p><p>Batteries are able to be added to on-grid systems at a later stage if required. The Tesla Powerwall 2 is a popular AC battery system which can be added to an existing solar system.</p><p><br></p><p>In an on-grid system, this is what happens after electricity reaches the switchboard:</p><p><br></p><p>The meter. Excess solar energy runs through the meter, which calculates how much power you are either exporting or importing (purchasing).</p><p><br></p><p>Metering systems work differently in many states and countries around the world. In this description I am assuming that the meter is only measuring the electricity being exported to the grid, as is the case in most of Australia. In some states, meters measure all solar electricity produced by your system, and therefore your electricity will run through your meter before reaching the switchboard and not after it. In some areas (currently in California), the meter measures both production and export, and the consumer is charged (or credited) for net electricity used over a month or year period. I will explain more about metering in a later blog.</p><p><br></p><p>The electricity grid. Electricity that is sent to the grid from your solar system can then be used by other consumers on the grid (your neighbours). When your solar system is not operating, or you are using more electricity than your system is producing, you will start importing or consuming electricity from the grid.</p><p><br></p><p><br></p><p>2. Off-Grid System</p><p><a href="https://www.mingdeinverter.com/off-grid-inverters" rel="noopener noreferrer" target="_blank"><strong>An off-grid system</strong></a> is not connected to the electricity grid and therefore requires battery storage. An off-grid solar system must be designed appropriately so that it will generate enough power throughout the year and have enough battery capacity to meet the home’s requirements, even in the depths of winter when there is less sunlight. </p><p><br></p><p>The high cost of batteries and inverters means off-grid systems are much more expensive than on-grid systems and so are usually only needed in more remote areas that are far from the electricity grid. However battery costs are reducing rapidly, so there is now a growing market for off-grid solar battery systems even in cities and towns. </p><p><br></p><p>There are different types of off-grid systems which we will go into more detail later, but for now I will keep it simple. This description is for an AC coupled system, in a DC coupled system power is first sent to the battery bank, then sent to your appliances. To understand more about building and setting up an efficient off-grid home see our sister site go off-grid/hybrid</p><p><br></p><p>The battery bank. In an off-grid system there is no public electricity grid. Once solar power is used by the appliances in your property, any excess power will be sent to your battery bank. Once the battery bank is full it will stop receiving power from the solar system. When your solar system is not working (night time or cloudy days), your appliances will draw power from the batteries.</p><p><br></p><p>Backup Generator. For times of the year when the batteries are low on charge and the weather is very cloudy you will generally need a backup power source, such as a backup generator or gen-set. The size of the gen-set (measured in kVA) should to be adequate to supply your house and charge the batteries at the same time.</p><p><br></p><p> </p><p><br></p><p>3. Hybrid System</p><p>Modern hybrid systems combine solar and battery storage in one and are now available in many different forms and configurations. Due to the decreasing cost of battery storage, systems that are already connected to the electricity grid can start taking advantage of battery storage as well. This means being able to store solar energy that is generated during the day and using it at night. When the stored energy is depleted, the grid is there as a back up, allowing consumers to have the best of both worlds. Hybrid systems are also able to charge the batteries using cheap off-peak electricity (usually after midnight to 6am).</p><p><br></p><p>There are also different ways to design hybrid systems but we will keep it simple for now. To learn more about the different hybrid and off-grid power systems refer to our detailed guide to home solar battery systems.</p><p><br></p><p>The battery bank. In a hybrid system once the solar power is used by the appliances in your property, any excess power will be sent to the battery bank. Once the battery bank is fully charged, it will stop receiving power from the solar system. The energy from the battery can then be discharged and used to power your home, usually during the peak evening period when the cost of electricity is typically at it’s highest.</p><p>The meter and electricity grid. Depending on how your hybrid system is set up and whether your utility allows it, once your batteries are fully charged excess solar power not required by your appliances can be exported to the grid via your meter. When your solar system is not in use, and if you have drained the usable power in your batteries your appliances will then start drawing power from the grid.</p><p><br></p>
products